151 research outputs found

    Studying the Impact of Negotiation Environments on Negotiation Teams' Performance

    Get PDF
    [EN] In this article we study the impact of the negotiation environment on the performance of several intra-team strategies (team dynamics) for agent-based negotiation teams that negotiate with an opponent. An agent-based negotiation team is a group of agents that joins together as a party because they share common interests in the negotiation at hand. It is experimentally shown how negotiation environment conditions like the deadline of both parties, the concession speed of the opponent, similarity among team members, and team size affect performance metrics like the minimum utility of team members, the average utility of team members, and the number of negotiation rounds. Our goal is identifying which intra-team strategies work better in different environmental conditions in order to provide useful knowledge for team members to select appropriate intra-team strategies according to environmental conditions.This work is supported by TIN2011-27652-C03-01, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish Government, and FPU Grant AP2008-00600 awarded to Victor Sanchez-Anguix. We would also like to thank anonymous reviewers and assistants of AAMAS 2011 who helped us to improve our previous work, making this present work possible.Sanchez-Anguix, V.; Julian Inglada, VJ.; Botti, V.; García-Fornes, A. (2013). Studying the impact of negotiation environments on negotiation teams' performance. Information Sciences. 219:17-40. https://doi.org/10.1016/j.ins.2012.07.017S174021

    The impact of location on housing prices: applying the Artificial Neural Network Model as an analytical tool.

    Get PDF
    The location of a residential property in a city directly affects its market price. Each location represents different values in variables such as accessibility, neighbourhood, traffic, socio-economic level and proximity to green areas, among others. In addition, that location has an influence on the choice and on the offer price of each residential property. The development of artificial intelligence, allows us to use alternative tools to the traditional methods of econometric modelling. This has led us to conduct a study of the residential property market in the city of Valencia (Spain). In this study, we will attempt to explain the aspects that determine the demand for housing and the behaviour of prices in the urban space. We used an artificial neutral network as a price forecasting tool, since this system shows a considerable improvement in the accuracy of ratings over traditional models. With the help of this system, we attempted to quantify the impact on residential property prices of issues such as accessibility, level of service standards of public utilities, quality of urban planning, environmental surroundings and other locational aspects.

    Case-Based Argumentation Framework. Reasoning Process

    Full text link
    The capability of reaching agreements is a necessary feature that large computer systems where agents interoperate must include. In these systems, agents represent self-motivated entities that have a social context, including dependency relations among them, and different preferences and beliefs. Without agreement there is no cooperation and thus, complex tasks which require the interaction of agents with different points of view cannot be performed. In this work, we follow a case-based argumentation approach for the design and implementation of Multi-Agent Systems where agents reach agreements by arguing and improve their argumentation skills from experience. A set of knowledge resources and a reasoning process that agents can use to manage their positions and arguments are presented.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2011). Case-Based Argumentation Framework. Reasoning Process. http://hdl.handle.net/10251/1109

    A Computational Argumentation Framework for Agent Societies

    Full text link
    Starting from the idea that the social context of agents determines the way in which agents can argue and reach agreements, this context should have a decisive influence in the computational representation of arguments. In this report, we advance research in the area of computational frameworks for agent argumentation by proposing a new argumentation framework (AF) for the design of open MAS in which the participating software agents are able to manage and exchange arguments between themselves taking into account the agents¿ social context. In order to do this, we have analysed the necessary requirements for this type of framework 1 and taken into account them in the design of our framework. Also, the knowledge resources that the agents can use to manage arguments in this framework are presented in this work. In addition, if heterogeneous agents can interact in the framework, they need a common language to represent arguments and argumentation processes. To cope with this, we have also designed an argumentation ontology to represent arguments and argumentation concepts in our framework.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2011). A Computational Argumentation Framework for Agent Societies. http://hdl.handle.net/10251/1103

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Case-Based Argumentation Framework. Strategies

    Full text link
    In agent societies, agents perform complex tasks that require different levels of intelligence and give rise to interactions among them. From these interactions, conflicts of opinion can arise, specially when MAS become adaptive and open with heterogeneous agents dynamically entering in or leaving the system. Therefore, software agents willing to participate in this type of systems will require to include extra capabilities to explicitly represent and generate agreements on top of the simpler ability to interact. In addition, agents can take advantage of previous argumentation experiences to follow dialogue strategies and easily persuade other agents to accept their opinions. Our insight is that CBR can be very useful to manage argumentation in open MAS and devise argumentation strategies based on previous argumentation experiences. To demonstrate the foundations of this suggestion, this report presents the work that we have done to develop case-based argumentation strategies in agent societies. Thus, we propose a case-based argumentation framework for agent societies and define heuristic dialogue strategies based on it. The framework has been implemented and evaluated in a real customer support application.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2011). Case-Based Argumentation Framework. Strategies. http://hdl.handle.net/10251/1109

    Case-Based Argumentation Framework. Dialogue Protocol

    Full text link
    On top of the simpler ability to interact, open MAS must include mechanisms for their agents to reach agreements by taking into account their social context. Argumentation provides MAS with a framework that assures a rational communication, which allows agents to reach agreements when conflicts of opinion arise. In this report we present the communication protocol that agents of a case-based argumentation framework use to interact when they engage in argumentation dialogues. The syntax and semantics of the framework are formalised and discussed.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2011). Case-Based Argumentation Framework. Dialogue Protocol. http://hdl.handle.net/10251/1109

    Applying CBR to manage argumentation in MAS

    Full text link
    [EN] The application of argumentation theories and techniques in multi-agent systems has become a prolific area of research. Argumentation allows agents to harmonise two types of disagreement situations: internal, when the acquisition of new information (e.g., about the environment or about other agents) produces incoherences in the agents' mental state; and external, when agents that have different positions about a topic engage in a discussion. The focus of this paper is on the latter type of disagreement situations. In those settings, agents must be able to generate, select and send arguments to other agents that will evaluate them in their turn. An efficient way for agents to manage these argumentation abilities is by using case-based reasoning, which has been successfully applied to argumentation from its earliest beginnings. This reasoning methodology also allows agents to learn from their experiences and therefore, to improve their argumentation skills. This paper analyses the advantages of applying case-based reasoning to manage arguments in multi-agent systems dialogues, identifies open issues and proposes new ideas to tackle them.This work was partially supported by CONSOLIDERINGENIO 2010 under grant CSD2007-00022 and by the Spanish government and FEDER funds under CICYT TIN2005-03395 and TIN2006-14630-C0301 projects.Heras Barberá, SM.; Julian Inglada, VJ.; Botti Navarro, VJ. (2010). Applying CBR to manage argumentation in MAS. International Journal of Reasoning-based Intelligent Systems. 2(2):110-117. https://doi.org/10.1504/IJRIS.2010.034906S1101172

    Modelling dialogues in agent societies

    Full text link
    Besides the simpler ability to interact, open multi-agent systems must include mechanisms for their agents to reach agreements by taking into account their social context. Argumentation provides multi-agent systems with a framework that assures a rational communication, which allows agents to reach agreements when conflicts of opinion arise. In this paper, we present the dialogue protocol that agents of a case-based argumentation framework can use to interact when they engage in argumentation dialogues. The syntax and semantics of the argumentation protocol are formalised and discussed. To illustrate our proposal, we have applied the protocol in the context of a water market. By using our dialogue protocol, agents represent water users that are able to explore different water allocations and justify their views about what is the best water distribution in a certain environment.This work is supported by the Spanish government Grants CONSOLIDER INGENIO 2010 CSD2007-00022, MINECO/FEDER TIN2012-36586-C03-01, and MICINN TIN2011-27652-C03-01.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2014). Modelling dialogues in agent societies. Engineering Applications of Artificial Intelligence. 34:208-226. https://doi.org/10.1016/j.engappai.2014.06.003S2082263

    Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis

    Full text link
    This is the author's version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurocomputing, Volume 378, 22 February 2020, DOI: 10.1016/j.neucom.2019.08.096[EN] In this work, a methodology for applying semantic-based padding in Convolutional Neural Networks for Natural Language Processing tasks is proposed. Semantic-based padding takes advantage of the unused space required for having a fixed-size input matrix in a Convolutional Network effectively, using words present in the sentence. The methodology proposed has been evaluated intensively in Sentiment Analysis tasks using a variety of word embeddings. In all the experimentation carried out the proposed semantic-based padding improved the results achieved when no padding strategy is applied. Moreover, when the model used a pre-trained word embeddings, the performance of the state of the art has been surpassed.We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The work of the first author is financed by Grant PAID-01-2461 2015, from the Universitat Politecnica de Valencia. This work is partially supported by and grantnumber. the Grant PROMETEO/2018/002 from GVA.Giménez, M.; Palanca Cámara, J.; Botti Navarro, VJ. (2020). Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis. Neurocomputing. 378:315-323. https://doi.org/10.1016/j.neucom.2019.08.096S315323378Ye, Q., & Doermann, D. (2015). Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7), 1480-1500. doi:10.1109/tpami.2014.2366765Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition. ACM Computing Surveys, 35(4), 399-458. doi:10.1145/954339.954342Li, P., & Mao, K. (2019). Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Systems with Applications, 115, 512-523. doi:10.1016/j.eswa.2018.08.009Yoo, S., Song, J., & Jeong, O. (2018). Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, 102-111. doi:10.1016/j.eswa.2018.03.055LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551. doi:10.1162/neco.1989.1.4.541W. Yin, K. Kann, M. Yu, H. Schütze, Comparative study of CNN and RNN for natural language processing, arXiv:1702.01923 (2017).J. Villena Román, S. Lana Serrano, E. Martínez Cámara, J.C. González Cristóbal, Tass-workshop on sentiment analysis at SEPLN (2013).Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.xKiritchenko, S., Zhu, X., & Mohammad, S. M. (2014). Sentiment Analysis of Short Informal Texts. Journal of Artificial Intelligence Research, 50, 723-762. doi:10.1613/jair.4272T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv:1301.3781 (2013).P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword information, arXiv:1607.04606 (2016).Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236-246. doi:10.1016/j.eswa.2017.02.002Chen, T., Xu, R., He, Y., & Wang, X. (2017). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications, 72, 221-230. doi:10.1016/j.eswa.2016.10.065Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, arXiv:1510.03820 (2015).Y. Kim, Convolutional neural networks for sentence classification, arXiv:1408.5882 (2014).Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. doi:10.1109/72.279181Zhang, W., Itoh, K., Tanida, J., & Ichioka, Y. (1990). Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Applied Optics, 29(32), 4790. doi:10.1364/ao.29.004790S.M. Mohammad, S. Kiritchenko, X. Zhu, NRC-Canada: building the state-of-the-art in sentiment analysis of tweets, arXiv:1308.6242 (2013).J. Barnes, R. Klinger, S.S.i. Walde, Assessing state-of-the-art sentiment models on state-of-the-art sentiment datasets, arXiv:1709.04219 (2017).Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. doi:10.1016/j.asej.2014.04.011M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org
    corecore